Quantum Yin-Yang fotografado diretamente.

Fotografia do entrelaçamento quântico

Físicos canadenses e italianos desenvolveram uma técnica que permite visualizar diretamente, e em tempo real, a função de onda de dois fótons entrelaçados.

Fótons são as partículas elementares que constituem a luz, e o entrelaçamento é o fenômeno bizarro que Einstein detestava, chamando-o de ação fantasmagórica à distância, mas que hoje está na base do funcionamento não apenas dos computadores quânticos, mas de inúmeras outras tecnologias quânticas, de sensores a simuladores.

Quando dois fótons estão entrelaçados, tudo o que acontece a um afeta imediatamente o outro, não importando a distância que os separe, o que permite fazer cálculos mais rapidamente do que usando um computador clássico – os físicos chamam isso de interação não-local. O entrelaçamento também é usado como base para o teletransporte quântico, um processo que permite que a informação seja movida de um qubit para outro sem precisar mover a própria partícula que contém essa informação.

Em 2018, uma equipe finlandesa conseguiu tornar o entrelaçamento quântico visível, mas usando objetos maciços, visíveis a olho nu. Esta demonstração feita agora é muito mais fundamental, indo diretamente ao cerne da mecânica quântica, visualizando a função de onda dos fótons.

Tomografia quântica

Lembre-se que, na física quântica, os componentes fundamentais da nossa realidade podem ser entendidos como partículas ou como ondas. Neste último caso, não temos uma “bolinha de gude” microscópica, mas uma função de onda, uma função matemática que descreve o comportamento dessa partícula. Por estranho que possa parecer, a função de onda é um fenômeno real, uma espécie de matemática que virou realidade.

Mais precisamente, a função de onda permite prever os resultados prováveis de várias medições de uma “partícula”, por exemplo sua posição, velocidade etc. Esta capacidade preditiva é inestimável nas diversas tecnologias quânticas, onde conhecer um estado quântico que é gerado ou inserido em um computador quântico permitirá testar o próprio computador. Além disso, os estados quânticos utilizados na computação quântica são extremamente complexos, envolvendo muitas entidades que podem apresentar fortes correlações não-locais (entrelaçamento).

Hoje, conhecer a função de onda de um sistema exige uma técnica chamada tomografia quântica, que exige uma série de medições e um tal aumento de complexidade que uma única caracterização completa pode levar horas ou mesmo dias. Isto, claro, eleva muito a incerteza do resultado, que pode ser afetado por ruídos e pela própria complexidade (multidimensionalidade) do sistema que está sendo medido.

Holografia digital

Na óptica clássica, contudo, existe outra maneira de reconstruir um objeto 3D, por meio da holografia digital. Essa técnica se baseia no registro de uma única imagem, chamada interferograma, obtida pela interferência da luz espalhada pelo objeto com uma luz de referência.

Danilo Zia e colegas das universidade de Ottawa e Sapienza de Roma estenderam esse conceito para o caso não de um feixe de luz, mas de apenas dois fótons. Assim, a imagem gerada pela holografia digital mostra não apenas a função de onda dos dois fótons, como documenta o próprio fenômeno do entrelaçamento quântico entre ambos.

A reconstrução do estado bifóton requer sobrepô-lo a um estado quântico conhecido e, em seguida, analisar a distribuição espacial das posições onde os dois fótons chegam simultaneamente. Fotografar a chegada simultânea de dois fótons é conhecida como imagem de coincidência. Esses fótons podem vir da fonte de referência ou de uma fonte desconhecida. A mecânica quântica estabelece que a fonte dos fótons não pode ser identificada. Isto resulta em um padrão de interferência que pode ser usado para reconstruir a função de onda desconhecida.

Este experimento foi possível graças a uma câmera avançada que registra eventos com resolução de nanossegundos para cada píxel.

“Este método é exponencialmente mais rápido que as técnicas anteriores, exigindo apenas minutos ou segundos, em vez de dias. É importante ressaltar que o tempo de detecção não é influenciado pela complexidade do sistema – uma solução para o desafio de longa data da escalabilidade na tomografia projetiva,” disse Alessio D’Errico, membro da equipe.

A velocidade e a precisão desta técnica terão impacto muito além da pesquisa acadêmica, com potencial para acelerar os avanços da tecnologia quântica, como melhorar a leitura dos qubits, a detecção de substâncias, a comunicação quântica e o desenvolvimento de novas técnicas de imageamento.

Bibliografia:

Artigo: Interferometric imaging of amplitude and phase of spatial biphoton states
Autores: Danilo Zia, Nazanin Dehghan, Alessio D’Errico, Fabio Sciarrino, Ebrahim Karimi
Revista: Nature Photonics
DOI: 10.1038/s41566-023-01272-3

Fonte : Inovação Tecnológica

 

Deixe uma resposta

Esse site utiliza o Akismet para reduzir spam. Aprenda como seus dados de comentários são processados.