Arquivo da tag: ciência

Matéria digital: recriando a natureza usando bits em vez de átomos

Bits de matéria

Os materiais artificiais projetados e construídos para terem propriedades não encontradas nos materiais naturais – os chamados metamateriais – são usados para fazer mantos de invisibilidade, lentes planas e outros dispositivos outrora considerados impossíveis.

O problema é que não é fácil fabricar os meta-átomos artificiais necessários para criar essa metamatéria.

Agora, em um trabalho que mereceu a capa da revista Nature Materials, pesquisadores demonstraram que é possível fabricar um metamaterial juntando "bits de matéria".

Cristian Giovampaola e Nader Engheta, da Universidade da Pensilvânia, nos Estados Unidos, lançaram o conceito de "metamaterial digital" e construíram os primeiros protótipos, demonstrando a possibilidade de fabricar materiais com uma determinada permissividade juntando quaisquer dois materiais, sendo necessário apenas que a permissividade de um dos materiais seja positiva e a do outro negativa.

Permissividade é a propriedade de um material que descreve sua reação a um campo eletromagnético dentro dele. Assim, é uma qualidade fundamental a ser considerada no projeto de dispositivos ópticos, como lentes, guias de onda, processadores fotônicos e, claro, mantos de invisibilidade dos mais diversos tipos.

Metamaterial digital

Tomando emprestado termos da computação binária, esses metamateriais "digitais" são compostos de "bits", que são então combinados em "bytes". Esses bytes podem assumir diferentes formatos, como cilindros em nanoescala construídos com um bit de um dos metamateriais embrulhado em outro.

"A inspiração veio da eletrônica digital," disse o professor Engheta, que vem trabalhando com o que ele chama de metatrônica, criando uma computação com luz no interior de processadores fotônicos.

"Com os sistemas binários, podemos pegar um sinal analógico – uma onda – decompor uma amostra em pontos discretos e, finalmente, expressá-los como uma sequência de 0s e 1s. Nós queríamos ver se conseguíamos quebrar as propriedades eletromagnéticas de um material da mesma forma.

Matéria digital: recriando a natureza usando bits em vez de átomos

A inspiração para a criação dos bits e bytes de matéria veio da eletrônica digital. [Imagem: Giovampaola/Engheta – 10.1038/nmat4082]

"Quando você digitaliza um sinal, você olha para a sua magnitude em cada ponto no tempo e lhe dá um valor. Estamos aplicando o mesmo processo aos materiais, olhando para a permissividade que eles precisam ter em cada ponto do espaço a fim de que executem a função que queremos," explicou o pesquisador.

No caso dos nanocilindros, alterando os raios dos núcleos e dos revestimentos, bem como qual dos dois bits fica de dentro ou de fora, a dupla demonstrou matematicamente a possibilidade de fabricar metamateriais sólidos de praticamente qualquer permissividade.

Além disso, eles demonstraram que, arranjando cuidadosamente esses bytes em padrões mais complicados, é possível fabricar lentes planas, hiperlentes e guias de onda.

Matéria digital na prática

Para simplificar o trabalho, Cristian e Enghetta simularam bytes de metamateriais feitos de prata e vidro, mas ressaltam que qualquer par de materiais que siga a regra permissividade negativa/positiva vai funcionar.

A geometria núcleo-revestimento do byte foi escolhida porque é uma estrutura que os cientistas dos materiais já são craques em construir. Mas é possível construir também bytes com geometrias alternativas, como materiais com camadas sobrepostas e alternadas.

Uma vez que os bytes são construídos, a necessidade de cada aplicação óptica que se tem em mente é atendida alterando a maneira como esses bytes são organizados uns ao lado dos outros.

Os pesquisadores demonstraram a viabilidade de criação de hiperlentes feitas com o metamaterial digital, lentes especiais que podem produzir imagens de objetos menores do que o comprimento de onda da luz, bem como guias de onda que canalizam a luz em torno de curvas e cantos.

Dispondo cuidadosamente os bytes de matéria artificial, de tal modo que eles canalizem de forma bem definida, é possível guiar a luz de forma precisa no interior de processadores que usam luz em vez de eletricidade. Ou criar a ilusão de que a luz passa direto através de um objeto, efetivamente tornando-o invisível.

Bibliografia:
Digital metamaterials
Cristian Della Giovampaola, Nader Engheta
Nature Materials
Vol.: 13, 1115-1121
DOI: 10.1038/nmat4082

Fonte : Inovação Tecnológica

Matéria digital: recriando a natureza usando bits em vez de átomos

Brasil pode se tornar membro oficial do CERN

Sócio do LHC

Representantes do do Centro Europeu de Pesquisa Nuclear (CERN, na sigla em inglês), estiveram no Brasil para avaliar se o país tem condições de se tornar membro associado da instituição.

O CERN é o responsável pela construção e operação do maior acelerador de partículas do mundo – o Grande Colisor de Hádrons (LHC, na sigla em inglês) -, onde foram descobertos nos últimos meses indícios da existência do bóson de Higgs.

Até hoje, 20 países europeus são oficialmente membros do CERN, que foi fundado em 1954. Outros 40 países que não são membros oficiais, incluindo o Brasil, têm pesquisadores participando dos experimentos realizados na instituição.

A partir de 2010, em função da redução da contribuição de seus países-membros, causada pela crise econômica europeia, a organização passou a aceitar como membros associados países não europeus.

O Brasil e Rússia, entre outras nações, demonstraram interesse em fazer parte do grupo.

Custos e benefícios

Para se tornar membro associado, os representantes do CERN avaliam se a comunidade de físicos, além de universidades, instituições de pesquisa e empresas do país têm condições de se beneficiar das atividades relacionadas à física de partículas realizadas na instituição e das tecnologias associadas e geradas a partir delas.

A internet, por exemplo, foi criada em 1989 por um cientista do CERN – o físico britânico Tim Berners-Lee, em parceria com outro pesquisador da instituição, o belga Robert Cailliau.

Se for aceito como membro oficial do CERN, o Brasil terá que contribuir com uma taxa anual calculada em função do PIB do país – o orçamento da instituição foi o equivalente a R$2,54 bilhões em 2011.

Em contrapartida, as indústrias brasileiras poderão se habilitar para participar dos contratos que a instituição oferece para o fornecimento de tecnologias para as atualizações do LHC e para os experimentos realizados na instituição.

Além disso, o país também poderá participar dos programas de pós-doutorado, treinamento para engenheiros e períodos sabáticos oferecidos pelo CERN e ser membro do conselho da instituição.

Como membro oficial do centro de pesquisa, o Brasil ainda terá poder de voto nos comitês de colaborações, que decidem como serão realizados e financiados os experimentos e as análises dos dados gerados por eles.

Participação brasileira no LHC

Um grupo de pesquisadores da Universidade Estadual Paulista (Unesp) participa da colaboração Compact Muon Solenoid (CMS, na sigla em inglês), um dos grandes detectores do LHC.

Os pesquisadores da Unesp integram o Centro de Pesquisa e Análise de São Paulo (Sprace, na sigla em inglês), criado em 2003.

O Sprace teve participação ativa no experimento DZero do Fermilab, nos Estados Unidos, que operou até setembro de 2011 e já publicou mais de 130 trabalhos científicos resultados de pesquisas com a colaboração CMS.

O cluster do Sprace, atualmente com capacidade de armazenamento de 1 petabyte, faz parte do Worldwide Computing Grid do LHC (WLCG).

Cientistas da Universidade de São Paulo (USP) e da Universidade Estadual de Campinas (Unicamp) também participam da colaboração ALICE, outro detector do LHC, que reúne mais de 1,2 mil cientistas de 36 países e 132 instituições de pesquisa diferentes.

Em sua passagem pelo Brasil, a delegação do CERN visitou universidades, instituições de pesquisa e empresas nas cidades de São Paulo, Rio de Janeiro, Campinas e Brasília.

Polêmica

Recentemente o Brasil formalizou sua adesão a outro grande projeto internacional, o Observatório Europeu do Sul (ESO).

A medida recebeu duras críticas da comunidade científica não envolvida com a decisão, que afirma que os recursos poderiam ser gastos de forma mais produtiva com pesquisas mais afetas aos trabalhos desenvolvidos nas universidades brasileiras.

Fonte : Informação Tecnológica

Energia escura é real, dizem astrônomos

Realidade desconhecida

Energia escura, a misteriosa força teorizada para explicar a aceleração da expansão do Universo, "está realmente lá".

É o que garante uma equipe de astrônomos das universidades de Portsmouth e Munique.

Ao término de um estudo que durou dois anos, os astrônomos concluíram que a probabilidade da existência real da energia escura é de 99,996%.

"A energia escura é um dos maiores mistérios científicos do nosso tempo, por isso não surpreende que muitos pesquisadores questionem sua existência," comentou Bob Nichol, membro da equipe.

"Mas, com nosso trabalho, estamos mais confiantes do que nunca que esse exótico componente do Universo é real – ainda que nós continuemos sem saber do que ela é feita," acrescentou.

A hipótese da energia escura foi levantada em 1998, tendo sido premiada com o Prêmio Nobel de Física de 2011.

Conchas de Universo

Os dados analisados pela equipe assumiram a forma de uma série de conchas sobrepostas.

Os mapas extragalácticos selecionados pelos pesquisadores como relevantes são mostrados como conchas, representando uma distância crescente da Terra, da esquerda para a direita.

O objeto mais próximo visto nos mapas é a nossa galáxia, a Via Láctea, que é uma potencial fonte de ruído para a análise dos objetos mais distantes.

A seguir estão seis conchas contendo mapas de milhões de galáxias distantes utilizadas no estudo.

Estes mapas foram produzidos com diferentes telescópios, em comprimentos de onda diferentes, e foram codificados por cores para mostrar aglomerados de galáxias mais densos em vermelho e menos densos em azul – existem furos nos mapas, devido a cortes efetuados por diferenças de qualidade dos dados.

A última e maior concha mostra a temperatura da radiação cósmica de fundo detectada pela sonda espacial WMAP (vermelho é quente, azul é frio), que é a imagem mais distante do Universo já vista, alcançando cerca de 46 bilhões de anos-luz de distância.

A equipe afirma ter detectado, com 99,996% de significância, correlações muito pequenas entre os mapas de primeiro plano (à esquerda) e a radiação cósmica de fundo (à direita).

Efeito Integrado Sachs Wolfe

Na falta da energia escura, ou de uma grande curvatura no Universo, não deveria haver correspondência entre os mapas da distante radiação cósmica de fundo e das galáxias mais próximas, do chamado Universo Local.

A existência da energia escura, por outro lado, produz um efeito estranho e contraintuitivo, pelo qual os fótons da radiação cósmica de fundo ganham energia conforme viajam através de grandes aglomerados de matéria.

Conhecido como Efeito Integrado Sachs Wolfe – em referência a Rainer Sachs e Arthur Wolfe – o fenômeno foi detectado pela primeira vez em 2003, mas era tão pequeno que os resultados foram questionados e atribuídos à poeira presente na nossa galáxia.

Agora, os cientistas alegam ter re-examinado todos os argumentos contra aquela detecção, assim como melhorado os mapas.

E chegaram ao índice de precisão alegado – de 99,996% – que é similar ao atribuído ao Bóson de Higgs detectado recentemente pelo LHC.

Sempre Einstein

"Este trabalho nos fala a respeito de possíveis modificações à Teoria da Relatividade Geral de Einstein," afirmou Tommaso Giannantonio, que coordenou os estudos.

"A próxima geração de rastreios de galáxias e da radiação cósmica de fundo deverá fornecer uma medição definitiva, ou confirmando a relatividade geral, incluindo a energia escura, ou, de forma ainda mais intrigante, exigindo um entendimento completamente novo de como a gravidade funciona," concluiu.

Energia escura é real, dizem astrônomos

Os mapas extragalácticos selecionados pelos pesquisadores como relevantes são mostrados como conchas, representando uma distância crescente da Terra, da esquerda para a direita. [Imagem: Terra: NASA/BlueEarth; Via Láctea: ESO/S.Brunier;CMB:NASA/WMAP]

Fonte : Inovação Tecnológica

Cientista diz que viagem em dobra não é impossível

Explorar mundos distantes não é uma visão impossível para os escritores de ficção científica, que sempre levaram a imaginação através dos confins do universo em fabulosas naves espaciais. Agora um cientista da NASA parece querer transformar uma ficção de Jornada em fato científico, a velocidade de dobra.

A NASA implementou em 2011 um avançado laboratório de física de propulsão, informalmente conhecido como “Eagleworks“, para prosseguir na pesquisa de tecnologias de propulsão necessárias para permitir a exploração humana do sistema solar ao longo dos próximos 50 anos, e permitindo o voo espacial interestelar até o final do século. Este trabalho apóia diretamente os objetivos do ”Breakthrough Propulsion” da agência.

O Dr. Harold “Sonny” White, atualmente, atua como Líder do Advanced Propulsion Theme Lead e é o representante do Johnson Space Center para os Grupos de Trabalho de sistemas nucleares. O trabalho que está sendo perseguido por este laboratório é aplicado na investigação científica nas áreas do vácuo quântico, gravidade, natureza do espaço-tempo, e outros fenômenos fundamentais da física.

Numa tentativa de encontrar alternativas que nos permitam viajar extremamente rápido, sem quebrar as leis da física, Dr. White e outros físicos descobriram brechas em algumas equações matemáticas, brechas essas que indicam que a dobra do espaço-tempo é realmente possível, “Talvez uma experiência de Jornada em nossa existência não seja uma possibilidade remota”, disse o cientista num artigo seu publicado no Icarus Interestellar, um grupo sem fins lucrativos de cientistas e engenheiros dedicados a perseguir vôo espacial interestelar.

Um trabalho teórico recente publicado por White sugere que é possível projetar o espaço-tempo, criando condições semelhantes ao que impulsiona a expansão do cosmos. ”A forma canônica da métrica de Alcubierre nos fornece uma nova visão sobre como um dispositivo de teste poderia ser construído para gerar uma região esférica de perturbação de 1 cm de diâmetro”, disse White em sua dissertação.

Essas equações estão sendo testadas agora usando um instrumento chamado White-Juday Warp Field Interferometer (Interferômetro de Campo de Dobra White-Juday). Este interferômetro a laser vai tentar gerar e detectar um exemplo microscópico de uma pequena bolha de dobra.

Através de um Q-Thrister, propulsor de plasma quântico de vácuo, usando os mesmos princípios por trás dos propulsores magnetohidrodinâmicos (MHD), o plasma virtual é exposto a campos cruzados que forçam o plasma numa direção a alta velocidade. Q-Propulsores diferentes usando as flutuações do vácuo quântico como a fonte de combustível, podem eliminar a necessidade de transportar o propulsor.

O Dr. White diz que, se tudo for confirmado nos experimentos práticos, “seremos capazes de criar um motor que vai nos levar a Alpha Centauri em duas semanas, medida pelos relógios aqui na Terra ou visitar Gliese 581g, um planeta parecido com a Terra, 20 anos-luz de distância, em dois anos”. O tempo será o mesmo na nave e na Terra, afirma o cientista, e não haverá aquela “maré de forças fisicas dentro da bolha, sem problemas indevidos, e a aceleração adequada lá dentro será zero. Ao ligar o campo, ninguém será esmagado contra a parede pela aceleração, o que tornaria essa viagem muito curta e triste”.

Outro problema seria as necessidades energéticas colossais para dobrar o espaço em volta da uma nave. No entanto, a análise teórica de White demonstrou que as necessidades de energia podem ser reduzidas primeiro para optimizar a espessura da bolha de dobra, e ainda pela oscilação da intensidade da bolha para reduzir a rigidez do tempo-espaço. Essa redução seria equivalente a passar de uma massa exótica de energia escura do tamanho de Júpiter para uma quantidade menor do que a sonda Voyager 1 (500 kg) criando uma bolha de 10 metros com uma velocidade efetiva de 10 vezes a velocidade da luz, o que já seria uma melhoria e tanto, né?

White, que chamou o projeto de uma “experiência humilde”, acredita que muito ainda tem de ser feito para que seja comprovada uma real velocidade de dobra, mas disse que representa um primeiro passo promissor, “Embora este seja apenas um exemplo pequeno dos fenômenos, vai ser a prova de existência para a idéia de perturbar o espaço-tempo como uma “pilha de Chicago” foi naquele momento”, disse o entusiamado cientista. “Lembre-se que em dezembro de 1942 viu-se a primeira demonstração de uma reação nuclear controlada que gerou meio watt. Esta prova de existência foi seguida pela ativação de um outro reator de quatro megawatts em novembro de 1943. A prova de existência para a aplicação prática de uma idéia científica pode ser um ponto de inflexão para o desenvolvimento da tecnologia”.

White prometeu que apresentaria algum resultado no 100 Year Starship Symposium em Houston, realizado neste último fim de semana, e que teve a participação dos atores Nichelle Nichols e LeVar Burton, do presidente Bill Clinton, entre outras celebridades, cientistas e astronautas.

Fonte: FFESP e GISMODO.

Nova Proposta de “Raio Atrator” Usa Pressão Negativa de Radiação

Projeto em camadas dividiria dois aspectos-chave de onda luminosa, permitindo à energia eletromagnética atrair objetos

por Evelyn Lamb

Os raios atratores, onipresentes na ficção científica, podem estar próximos se tornar fato científico. Em um artigo publicado neste ano, físicos propuseram uma estrutura que pode permitir à luz atrair objetos.
Normalmente a luz, ainda que fracamente, empurra os objetos. No campo da manipulação óptica, pinças ópticas empregam essa força para mover estruturas microscópicas: de átomos a bactérias. A capacidade de puxar aumentaria a precisão e a utilidade da manipulação ótica. Em voos espaciais, engenheiros propuseram velas para capturar a força exercida pela luz.
Em vez de rebocar naves espaciais, o raio atrator proposto recentemente pode ser mais útil para a biologia ou medicina. “Se você quiser puxar algo em sua direção, é só reduzir a pressão”, explica Mordechai Segev, físico do Technion – Instituto de Tecnologia de Israel, que descreve a ideia de sua equipe em um artigo de abril na Optics Express. “Cria-se um pouco de vácuo”, adiciona ele. O problema é que em aplicações médicas delicadas, como cirurgias de pulmão, é importante não mudar a pressão e nem introduzir gases novos. “Nesse caso a luz seria um dispositivo de sucção”, observa o pesquisador, “então a pressão não se alteraria de forma nenhuma, apenas a luz”.
As ideias anteriores para um “raio atrator” geralmente se concentravam em criar novos campos gravitacionais para arrastar objetos e aquecer o ar para criar diferenças de pressão ou induzir cargas elétricas e magnéticas em objetos, para que eles se movessem na direção de um raio laser.
A proposta mais recente faz proveito de um fenômeno chamado pressão negativa de radiação. O físico russo Victor Veselago teorizou sobre a existência desse fenômeno em seu artigo de 1967, sobre materiais com uma propriedade incomum chamada de índice de refração negativo. Um índice de refração é um número que descreve a forma com que a luz é curvada quando passa por uma lente de vidro ou outro meio – quando o artigo foi publicado ninguém sabia se esse número poderia ser negativo em algum material. Nas últimas décadas, porém, várias equipes de pesquisadores provaram que a refração negativa pode ocorrer em substâncias especificamente produzidas, chamadas de metamateriais, o que levou a capas de invisibilidade limitada e a “super” lentes livres de distorção.
O mecanismo de pressão negativa de radiação depende de dois aspectos das ondas de luz: suas velocidades de fase e de grupo. Uma onda de luz consiste em grupos de ondas menores; a velocidade de grupo é a velocidade e direção do grupo de ondas em geral. A velocidade de fase, por sua vez, refere-se à velocidade e direção de um ponto em uma das ondas constituintes. A energia eletromagnética da onda de luz acompanha a direção da velocidade de grupo, enquanto o efeito da onda sobre uma partícula vai em direção à velocidade de fase. Se essas duas velocidades apontam em direções diferentes, a pressão negativa de radiação pode surgir.

O uso de metamateriais para mover partículas por meio da pressão negativa de radiação foi limitado porque muitos desses materiais são sólidos, e introduzir um intervalo para partículas eliminaria a pressão negativa de radiação. Além disso, todos os metamateriais atuais contêm metais, que absorvem energia eletromagnética, o que torna o efeito atrativo sobre partículas desprezível.
Em vez de usar metamateriais, a equipe do Technion propõe um guia de ondas feito de materiais com uma propriedade chamada de birrefringência para criar os efeitos ópticos necessários. A birrefringência, que ocorre naturalmente em cristais como quartzo e calcita, descreve materiais que têm índices de refração múltiplos dependendo da direção em que a luz entre neles. Se colocarmos um cristal de calcita sobre um jornal, a imagem ficará dobrada.
O projeto de Segev e seu grupo usa camadas de materiais com diferentes tipos de birrefringência, além de espelhos especialmente projetados, para fazer um modelo prático de como a pressão negativa de radiação pode ser alcançada. Nesse guia de ondas as velocidades de grupo e de fase não se moveriam em direções opostas. Além disso, ele inclui um grande intervalo entre as camadas. Esse intervalo, que não interfere com as propriedades ópticas do material, permite a introdução de partículas para serem puxadas para o guia de ondas. “É como um sanduíche”, compara Segev.
O projeto proposto pode usar uma variedade de materiais birrefringentes, que são disponíveis e não contêm metais, e por isso não roubam muita energia da luz. Além disso, apesar de os materiais birrefringentes que seriam usados terem apenas micrômetros de espessura, o intervalo teria milímetros de largura, permitindo que partículas relativamente grandes fossem manipuladas pela luz.
Viktor Podolskiy, um físico da University of Massachusetts Lowell, que não fez parte da pesquisa, explica que tanto a abordagem dos metamateriais quanto a da birrefringência resolvem problemas diferentes na criação de pressão negativa de radiação e têm vantagens e desvantagens diferentes. “Os metamateriais resolvem vários problemas quando se tenta confinar a luz a espaços menores, especiais”, elucida Podolskiy. Em contraste, a abordagem da birrefringência “faz o oposto: traz a refração negativa para o nível de objetos de grande escala”. As duas abordagens podem vir a ter aplicações práticas.
Jack Ng, professor assistente de pesquisa da Hong Kong University de Ciência e Tecnologia que trabalhou na proposta do raio atrator envolvendo a indução de cargas, aponta que o estudo pode ter algumas ideias interessantes, mas também algumas falhas. Por exemplo, apesar de o grupo ter mostrado que a transferência de energia pode ser negativa, “não mostrou que a força pode ser negativa”. Em outras palavras, as partículas podem não se mover.
De qualquer forma, existem várias ideias sobre a geração de pressão negativa de radiação no papel; o laboratório de Segev sequer têm os recursos necessários para criar o guia de ondas proposto. Segev, no entanto, diz que várias empresas podem produzir os materiais necessários e que os pesquisadores esperam encontrar uma delas em breve para poderem testar seu projeto experimentalmente. Até lá, as partículas terão que esperar para sentirem a emoção de serem levadas para a luz.

 Flickr/alanymchan

Nova proposta de “raio atrator” aproveitaria a energia da luz.

Fonte : Inovação Tecnológica