Arquivo da categoria: futuro

Coletores Fremen em desenvolvimento : Aparelho retira água potável do ar usando apenas energia solar

Tirando água do ar

Este pequeno aparelho é capaz de coletar a umidade do ar e depositá-la em um recipiente na forma de água potável – e usando apenas luz solar.

O dispositivo não requer nenhuma entrada adicional de energia e mostrou-se eficaz mesmo quando os níveis de umidade são semelhantes aos observados nas regiões mais secas do mundo.

Essa tecnologia poderá fazer a diferença, já que dois terços da população mundial está enfrentando escassez de água, ainda que ela esteja presente em abundância no ar ao nosso redor – estimativas indicam que há cerca de 13.000 trilhões de litros de água na forma de umidade na atmosfera terrestre.

Coletor de água

Para capturar a umidade atmosférica, Hyunho Kim e seus colegas da Universidade da Califórnia em Berkeley e do MIT, ambos nos EUA, utilizaram um material extremamente poroso, conhecido como MOF, sigla em inglês para estrutura metal-orgânica.

O material, chamado MOF-801, absorve a umidade do ar em sua própria estrutura. A seguir, o calor solar é usado para liberar a água, que é então armazenada em um condensador.

O aparelho funcionou bem em um cenário natural ao ar livre, no teto do laboratório. Experimentos em uma câmara controlada mostraram que ele é capaz de produzir 2,8 litros de água potável por quilograma de MOF-801 em um período de 12 horas sob luz do dia, com níveis de umidade relativa de apenas 20%.

“Nós não apenas construímos um dispositivo passivo que fica lá coletando água; nós já estabelecemos as bases experimentais e teóricas para que possamos examinar outros MOFs, milhares dos quais poderão ser fabricados, para encontrar materiais ainda melhores. Existe um grande potencial para aumentar a quantidade de água que está sendo recolhida. É apenas uma questão de mais engenharia agora,” disse o professor Omar Yaghi, coordenador do trabalho.

Estruturas metal-orgânicas

O professor Omar Yaghi inventou as estruturas metal-orgânicas há mais de 20 anos, combinando metais como magnésio ou alumínio com moléculas orgânicas, tudo disposto em um arranjo preciso para criar estruturas rígidas e porosas, ideais para armazenar gases e líquidos. Desde então, mais de 20.000 MOFs diferentes foram criados por pesquisadores em todo o mundo.

Alguns retêm produtos químicos como o hidrogênio ou o metano. A empresa química BASF está testando um dos MOFs de Yaghi em caminhões movidos a gás natural, já que os tanques cheios de MOF armazenam três vezes mais metano do que pode ser mantido sob pressão. Outros MOFs são capazes de capturar dióxido de carbono de gases de combustão, catalisar a reação de produtos químicos adsorvidos ou separar petroquímicos em refinarias.

Este protótipo de coletor de água da umidade do ar ainda poderá ser muito melhorado, garante Yaghi. O MOF utilizado consegue absorver apenas 20% do seu peso em água, mas outras versões têm potencial para absorver 40% ou mais. O material também pode ser ajustado para ser mais eficaz em níveis de umidade mais alta ou mais baixa.

Bibliografia:

Water harvesting from air with metal-organic frameworks powered by natural sunlight
Hyunho Kim, Sungwoo Yang, Sameer R. Rao, Shankar Narayanan, Eugene A. Kapustin, Hiroyasu Furukawa, Ari S. Umans, Omar M. Yaghi, Evelyn N. Wang
Science
DOI: 10.1126/science.aam8743

Fonte : Inovação Tecnológica

 

Velocidade de dobra é mais factível do que se imaginava

Viagens interestelares

Um evento chamado "Espaçonave Interestelar em 100 Anos" parece ser o lugar ideal para quem quer discutir ideias mirabolantes para o futuro da exploração espacial.

Mas não exatamente o lugar onde procurar ideias para colocar em prática a curto prazo.

É por isso que está causando furor uma apresentação feita pelo cientista Harold White, do Centro Espacial Johnson, da NASA, durante o evento.

White propôs nada menos do que um experimento de laboratório, a ser realizado nos próximos meses, para demonstrar que as viagens espaciais acima da velocidade da luz são possibilidades com um nível de "concretude" muito além do imaginado até agora – ou, também se poderia dizer, são "menos impossíveis" do que se supunha.

As viagens espaciais interestelares não podem ser realizadas com as tecnologias conhecidas hoje porque as naves são lentas demais.

A Voyager 1, por exemplo, que é o artefato construído pelo homem a atingir a maior distância da Terra, está a 17 horas-luz de distância, mesmo viajando continuamente desde 1977.

Isso porque ela viaja a 0,006% da velocidade da luz. A Voyager levará 17.000 anos para percorrer 1 ano-luz – e a estrela mais próxima de nós, Alfa Centauri, está a 4,3 anos-luz.

Velocidade de dobra

As viagens em velocidade superluminal – acima da velocidade da luz – são comuns na ficção científica, onde são conhecidas como viagens em velocidade de dobra – ou warp – uma referência a dobras no tecido do espaço-tempo.

A Teoria da Relatividade estabelece que nada pode viajar mais rápido do que a velocidade da luz. Mas ela não impõe nenhum limite para a velocidade com que o tecido do espaço-tempo pode se contrair ou expandir.

É fácil entender essa "brecha na lei": imagine duas lâmpadas, uma ao lado da outra, piscando alternadamente. A velocidade máxima com que a luz de cada uma delas chegará aos seus olhos será sempre a velocidade da luz. Mas a velocidade com que elas alternam as piscadas não tem nenhum limite.

No caso da viagem em velocidade de dobra, o truque é colocar a espaçonave dentro de uma "bolha" e fazer com que o espaço-tempo à frente da bolha se contraia, expandindo-se logo atrás da bolha. A espaçonave vai literalmente surfar pelo espaço-tempo, sem nenhuma aceleração.

Na verdade, em termos da velocidade da luz, a espaçonave estará totalmente parada em relação ao seu referencial, que é o seu "tapete mágico" de tecido espaçotemporal.

Viagem espacial acima da velocidade da luz pode ser possível

O conceito inicial da viagem de dobra que está sendo explorado foi proposto pelo físico mexicano Miguel Alcubierre. [Imagem: Harold White]

Energia negativa

Em 1994, o físico mexicano Miguel Alcubierre propôs um esquema para fazer isso, envolvendo um tipo de "matéria exótica", com energia negativa, que ninguém sabe se existe.

Além disso, para dar a partida na bolha de dobra, a proposta de Alcubierre exigiria energia negativa equivalente à massa do Universo.

O esquema foi aprimorado por outros cientistas, que chegaram a uma quantidade de energia negativa equivalente à massa de Júpiter.

O que o Dr. Harold White fez agora foi redesenhar o projeto inicial de Alcubierre, que previa uma nave espacial em formato de charuto circundada por um anel feito da matéria exótica e desconhecida, que seria o responsável por contrair o espaço à frente e expandi-lo atrás da nave.

Ao usar um anel de material arredondado – imagine um anel feito de um cano – White refez os cálculos e descobriu que será necessário usar apenas algumas centenas de quilogramas de energia negativa.

E, embora ninguém tenha a menor ideia de em que situação essa energia negativa possa ser encontrada ou produzida, White afirma que a ideia pode ser demonstrada em laboratório, em microescala.

Dobras espaçotemporais

É o que White pretende fazer em um novo laboratório que está sendo criado pela NASA, por enquanto conhecido informalmente como Eagleworks.

Ele está usando um tipo especial de interferômetro a laser, chamado Interferômetro de Campo de Dobra White-Juday, para criar versões microscópicas das dobras espaçotemporais.

O equipamento tem precisão suficiente para fazer o espaço-tempo se contrair e expandir apenas uma parte em 10 milhões, mas será o suficiente para demonstrar a viabilidade do conceito.

Se o experimento der certo, outros cientistas poderão se sentir encorajados a encarar os muitos problemas que ainda restarão para tornar realidade as viagens interestelares.

Entre esses problemas estão o fato de que as teorias ainda não sabem como ordenar ao mecanismo de dobra espacial para onde ele deve ir – se para frente ou para trás, por exemplo – e, para onde quer que ele vá, como é que se faz para pará-lo.

Fonte : Site Inovação Tecnológica

Cientista diz que viagem em dobra não é impossível

Explorar mundos distantes não é uma visão impossível para os escritores de ficção científica, que sempre levaram a imaginação através dos confins do universo em fabulosas naves espaciais. Agora um cientista da NASA parece querer transformar uma ficção de Jornada em fato científico, a velocidade de dobra.

A NASA implementou em 2011 um avançado laboratório de física de propulsão, informalmente conhecido como “Eagleworks“, para prosseguir na pesquisa de tecnologias de propulsão necessárias para permitir a exploração humana do sistema solar ao longo dos próximos 50 anos, e permitindo o voo espacial interestelar até o final do século. Este trabalho apóia diretamente os objetivos do ”Breakthrough Propulsion” da agência.

O Dr. Harold “Sonny” White, atualmente, atua como Líder do Advanced Propulsion Theme Lead e é o representante do Johnson Space Center para os Grupos de Trabalho de sistemas nucleares. O trabalho que está sendo perseguido por este laboratório é aplicado na investigação científica nas áreas do vácuo quântico, gravidade, natureza do espaço-tempo, e outros fenômenos fundamentais da física.

Numa tentativa de encontrar alternativas que nos permitam viajar extremamente rápido, sem quebrar as leis da física, Dr. White e outros físicos descobriram brechas em algumas equações matemáticas, brechas essas que indicam que a dobra do espaço-tempo é realmente possível, “Talvez uma experiência de Jornada em nossa existência não seja uma possibilidade remota”, disse o cientista num artigo seu publicado no Icarus Interestellar, um grupo sem fins lucrativos de cientistas e engenheiros dedicados a perseguir vôo espacial interestelar.

Um trabalho teórico recente publicado por White sugere que é possível projetar o espaço-tempo, criando condições semelhantes ao que impulsiona a expansão do cosmos. ”A forma canônica da métrica de Alcubierre nos fornece uma nova visão sobre como um dispositivo de teste poderia ser construído para gerar uma região esférica de perturbação de 1 cm de diâmetro”, disse White em sua dissertação.

Essas equações estão sendo testadas agora usando um instrumento chamado White-Juday Warp Field Interferometer (Interferômetro de Campo de Dobra White-Juday). Este interferômetro a laser vai tentar gerar e detectar um exemplo microscópico de uma pequena bolha de dobra.

Através de um Q-Thrister, propulsor de plasma quântico de vácuo, usando os mesmos princípios por trás dos propulsores magnetohidrodinâmicos (MHD), o plasma virtual é exposto a campos cruzados que forçam o plasma numa direção a alta velocidade. Q-Propulsores diferentes usando as flutuações do vácuo quântico como a fonte de combustível, podem eliminar a necessidade de transportar o propulsor.

O Dr. White diz que, se tudo for confirmado nos experimentos práticos, “seremos capazes de criar um motor que vai nos levar a Alpha Centauri em duas semanas, medida pelos relógios aqui na Terra ou visitar Gliese 581g, um planeta parecido com a Terra, 20 anos-luz de distância, em dois anos”. O tempo será o mesmo na nave e na Terra, afirma o cientista, e não haverá aquela “maré de forças fisicas dentro da bolha, sem problemas indevidos, e a aceleração adequada lá dentro será zero. Ao ligar o campo, ninguém será esmagado contra a parede pela aceleração, o que tornaria essa viagem muito curta e triste”.

Outro problema seria as necessidades energéticas colossais para dobrar o espaço em volta da uma nave. No entanto, a análise teórica de White demonstrou que as necessidades de energia podem ser reduzidas primeiro para optimizar a espessura da bolha de dobra, e ainda pela oscilação da intensidade da bolha para reduzir a rigidez do tempo-espaço. Essa redução seria equivalente a passar de uma massa exótica de energia escura do tamanho de Júpiter para uma quantidade menor do que a sonda Voyager 1 (500 kg) criando uma bolha de 10 metros com uma velocidade efetiva de 10 vezes a velocidade da luz, o que já seria uma melhoria e tanto, né?

White, que chamou o projeto de uma “experiência humilde”, acredita que muito ainda tem de ser feito para que seja comprovada uma real velocidade de dobra, mas disse que representa um primeiro passo promissor, “Embora este seja apenas um exemplo pequeno dos fenômenos, vai ser a prova de existência para a idéia de perturbar o espaço-tempo como uma “pilha de Chicago” foi naquele momento”, disse o entusiamado cientista. “Lembre-se que em dezembro de 1942 viu-se a primeira demonstração de uma reação nuclear controlada que gerou meio watt. Esta prova de existência foi seguida pela ativação de um outro reator de quatro megawatts em novembro de 1943. A prova de existência para a aplicação prática de uma idéia científica pode ser um ponto de inflexão para o desenvolvimento da tecnologia”.

White prometeu que apresentaria algum resultado no 100 Year Starship Symposium em Houston, realizado neste último fim de semana, e que teve a participação dos atores Nichelle Nichols e LeVar Burton, do presidente Bill Clinton, entre outras celebridades, cientistas e astronautas.

Fonte: FFESP e GISMODO.

Sonho : Roupa refrigerada / Ar Condicionado Pessoal

Microcompressor viabilizará ar-condicionado pessoal

 

Frio a tiracolo

Imagine se a merendeira pudesse funcionar como uma minigeladeira, que conservasse o lanche na temperatura ideal.

Ou, quem sabe, ter um criado-mudo refrigerado, no qual fosse possível manter remédios em condições adequadas.

Um processo inovador desenvolvido pela empresa brasileira Embraco pode mudar nossa forma de pensar em equipamentos de refrigeração, que devem passar de grandes sistemas estáticos a pequenos objetos portáteis.

O segredo está na redução das dimensões dos compressores, principal componente dos sistemas de refrigeração.

Modelos tradicionais, que costumam ser do tamanho de uma bola de futebol, pesam em média sete quilos.

Já os novos microcompressores, que chegam ao mercado este ano, são um pouco maiores do que uma lata de refrigerante e pesam apenas 1,3 quilo.

"Nosso objetivo daqui para frente é desenvolver equipamentos cada vez menores", afirma Fábio Klein, diretor de desenvolvimento tecnológico da empresa.

Refrigeração de eletrônicos

A primeira aplicação prática dos compressores miniaturizados será na área de refrigeração de componentes eletrônicos de máquinas industriais.

O microcompressor se mostrou uma solução competitiva para dissipar o calor gerado neste tipo de sistema, utilizado, por exemplo, em torres de telefonia celular.

A empresa estuda também a utilização da nova tecnologia em diversas soluções de geladeiras portáteis, como é o caso das lancheiras, além de trabalhar no desenvolvimento de compartimentos refrigerados que aumentem a eficiência do transporte de órgãos destinados a transplantes.

O uso do microcompressor em equipamentos portáteis tornou-se possível porque ele dispensa o uso de óleo lubrificante. Assim, ao contrário das geladeiras normais, que precisa ficar sempre na posição vertical, o microcompressor funciona em qualquer posição.

Roupa refrigerada

Outra possibilidade de uso dos microcompressores, atualmente fase de protótipo, mas já com resultados positivos, é a roupa refrigerada.

Em um país tropical como o Brasil, onde não raramente a temperatura ultrapassa os 40 graus, poderíamos substituir os ventiladores por camisas refrigeradas.

Seria uma espécie de ar condicionado pessoal.

Microcompressor: rumo às geladeiras portáteis e ar-condicionado pessoal

Ao contrário das geladeiras normais, que precisa ficar sempre na posição vertical, o microcompressor funciona em qualquer posição. [Imagem: Embraco]

 

Fonte : Inovação Tecnológica

Nova Proposta de “Raio Atrator” Usa Pressão Negativa de Radiação

Projeto em camadas dividiria dois aspectos-chave de onda luminosa, permitindo à energia eletromagnética atrair objetos

por Evelyn Lamb

Os raios atratores, onipresentes na ficção científica, podem estar próximos se tornar fato científico. Em um artigo publicado neste ano, físicos propuseram uma estrutura que pode permitir à luz atrair objetos.
Normalmente a luz, ainda que fracamente, empurra os objetos. No campo da manipulação óptica, pinças ópticas empregam essa força para mover estruturas microscópicas: de átomos a bactérias. A capacidade de puxar aumentaria a precisão e a utilidade da manipulação ótica. Em voos espaciais, engenheiros propuseram velas para capturar a força exercida pela luz.
Em vez de rebocar naves espaciais, o raio atrator proposto recentemente pode ser mais útil para a biologia ou medicina. “Se você quiser puxar algo em sua direção, é só reduzir a pressão”, explica Mordechai Segev, físico do Technion – Instituto de Tecnologia de Israel, que descreve a ideia de sua equipe em um artigo de abril na Optics Express. “Cria-se um pouco de vácuo”, adiciona ele. O problema é que em aplicações médicas delicadas, como cirurgias de pulmão, é importante não mudar a pressão e nem introduzir gases novos. “Nesse caso a luz seria um dispositivo de sucção”, observa o pesquisador, “então a pressão não se alteraria de forma nenhuma, apenas a luz”.
As ideias anteriores para um “raio atrator” geralmente se concentravam em criar novos campos gravitacionais para arrastar objetos e aquecer o ar para criar diferenças de pressão ou induzir cargas elétricas e magnéticas em objetos, para que eles se movessem na direção de um raio laser.
A proposta mais recente faz proveito de um fenômeno chamado pressão negativa de radiação. O físico russo Victor Veselago teorizou sobre a existência desse fenômeno em seu artigo de 1967, sobre materiais com uma propriedade incomum chamada de índice de refração negativo. Um índice de refração é um número que descreve a forma com que a luz é curvada quando passa por uma lente de vidro ou outro meio – quando o artigo foi publicado ninguém sabia se esse número poderia ser negativo em algum material. Nas últimas décadas, porém, várias equipes de pesquisadores provaram que a refração negativa pode ocorrer em substâncias especificamente produzidas, chamadas de metamateriais, o que levou a capas de invisibilidade limitada e a “super” lentes livres de distorção.
O mecanismo de pressão negativa de radiação depende de dois aspectos das ondas de luz: suas velocidades de fase e de grupo. Uma onda de luz consiste em grupos de ondas menores; a velocidade de grupo é a velocidade e direção do grupo de ondas em geral. A velocidade de fase, por sua vez, refere-se à velocidade e direção de um ponto em uma das ondas constituintes. A energia eletromagnética da onda de luz acompanha a direção da velocidade de grupo, enquanto o efeito da onda sobre uma partícula vai em direção à velocidade de fase. Se essas duas velocidades apontam em direções diferentes, a pressão negativa de radiação pode surgir.

O uso de metamateriais para mover partículas por meio da pressão negativa de radiação foi limitado porque muitos desses materiais são sólidos, e introduzir um intervalo para partículas eliminaria a pressão negativa de radiação. Além disso, todos os metamateriais atuais contêm metais, que absorvem energia eletromagnética, o que torna o efeito atrativo sobre partículas desprezível.
Em vez de usar metamateriais, a equipe do Technion propõe um guia de ondas feito de materiais com uma propriedade chamada de birrefringência para criar os efeitos ópticos necessários. A birrefringência, que ocorre naturalmente em cristais como quartzo e calcita, descreve materiais que têm índices de refração múltiplos dependendo da direção em que a luz entre neles. Se colocarmos um cristal de calcita sobre um jornal, a imagem ficará dobrada.
O projeto de Segev e seu grupo usa camadas de materiais com diferentes tipos de birrefringência, além de espelhos especialmente projetados, para fazer um modelo prático de como a pressão negativa de radiação pode ser alcançada. Nesse guia de ondas as velocidades de grupo e de fase não se moveriam em direções opostas. Além disso, ele inclui um grande intervalo entre as camadas. Esse intervalo, que não interfere com as propriedades ópticas do material, permite a introdução de partículas para serem puxadas para o guia de ondas. “É como um sanduíche”, compara Segev.
O projeto proposto pode usar uma variedade de materiais birrefringentes, que são disponíveis e não contêm metais, e por isso não roubam muita energia da luz. Além disso, apesar de os materiais birrefringentes que seriam usados terem apenas micrômetros de espessura, o intervalo teria milímetros de largura, permitindo que partículas relativamente grandes fossem manipuladas pela luz.
Viktor Podolskiy, um físico da University of Massachusetts Lowell, que não fez parte da pesquisa, explica que tanto a abordagem dos metamateriais quanto a da birrefringência resolvem problemas diferentes na criação de pressão negativa de radiação e têm vantagens e desvantagens diferentes. “Os metamateriais resolvem vários problemas quando se tenta confinar a luz a espaços menores, especiais”, elucida Podolskiy. Em contraste, a abordagem da birrefringência “faz o oposto: traz a refração negativa para o nível de objetos de grande escala”. As duas abordagens podem vir a ter aplicações práticas.
Jack Ng, professor assistente de pesquisa da Hong Kong University de Ciência e Tecnologia que trabalhou na proposta do raio atrator envolvendo a indução de cargas, aponta que o estudo pode ter algumas ideias interessantes, mas também algumas falhas. Por exemplo, apesar de o grupo ter mostrado que a transferência de energia pode ser negativa, “não mostrou que a força pode ser negativa”. Em outras palavras, as partículas podem não se mover.
De qualquer forma, existem várias ideias sobre a geração de pressão negativa de radiação no papel; o laboratório de Segev sequer têm os recursos necessários para criar o guia de ondas proposto. Segev, no entanto, diz que várias empresas podem produzir os materiais necessários e que os pesquisadores esperam encontrar uma delas em breve para poderem testar seu projeto experimentalmente. Até lá, as partículas terão que esperar para sentirem a emoção de serem levadas para a luz.

 Flickr/alanymchan

Nova proposta de “raio atrator” aproveitaria a energia da luz.

Fonte : Inovação Tecnológica

Físicos Declaram Vitória na Caça ao Higgs

Agora pesquisadores precisam determinar a identidade exata da nova partícula

EXPERIMENTO ATLAS © 2012 CERN

O experimento Atlas observou um novo tipo de bóson decaindo em quatro elétrons – um bom indicador de que é a partícula de Higgs.

Físicos anunciaram hoje ter visto um claro sinal do bóson de Higgs – uma parte fundamental do mecanismo que dá massa a todas as partículas.
Dois experimentos independentes apresentaram seus resultados hoje de manhã no Cern, o laboratório europeu de física de altas energias perto de Genebra, na Suíça. Ambos mostram evidências convincentes de um novo bóson pesando cerca de 125 gigaeletronvolts, que até o momento está de acordo com as previsões sobre o Higgs feitas anteriormente por físicos teóricos.
“Como leigo eu diria: ‘Acho que encontramos’. Vocês concordam?”, perguntou o diretor geral do Cern, Rolf-Dieter Heuer, ao auditório lotado. Os físicos reunidos explodiram em aplausos.
“É realmente incrível isso ter acontecido durante minha vida”, declarou Peter Higgs, o teórico que empresta seu nome ao bóson, lutando para não chorar diante da plateia.
O anúncio surge quase 50 anos após Higgs e quatro outros teóricos preverem a existência do bóson. A partícula foi originalmente invocada para explicar porque partículas chamadas de bósons W e Z têm massa, enquanto fótons – partículas de luz – não têm. Os bósons W e Z são os mediadores da força nuclear fraca (que governa certos tipos de decaimento radioativo), e os fótons da força eletromagnética. Então, explicando a diferença em suas massas, o bóson de Higgs permitiu que os físicos unificassem as duas forças em uma única força “eletrofraca”.
Dessa forma, o modelo padrão da física de partículas é baseado na existência de algo como uma partícula de Higgs. Com o passar dos anos, medições de outras partículas verificaram o modelo com precisão impressionante, apoiando a ideia da existência do Higgs, explica Tom Kibble, do Imperial College London, outro teórico a prever a partícula pela primeira vez. “A coisa toda não se encaixaria bem se ele não existisse”.
O anúncio de hoje é visto como uma forte confirmação do modelo e uma vitória para os dois experimentos do Grande Colisor de Hádrons (LHC, em inglês). De aproximadamente 500 trilhões de colisões, “o sinal que estamos vendo têm dezenas de partículas”, apontou Joe Incandela, porta-voz do experimento Solenóide Compacto de Múons (CMS, em inglês). O feito é equivalente a encontrar alguns grãos específicos dentro de uma piscina olímpica cheia de areia. “Estou extremamente orgulhoso de ter colaborado com o que foi feito”, adiciona Incandela. 
Heuer põe a possibilidade de as medidas serem falhas estatísticas na ordem de uma em um milhão – em termos físicos, por volta de 5 sigma.
As maneiras com que a nova partícula interage com outras é consistente com o que era esperado para um bóson de Higgs, ainda que medições adicionais sejam necessárias para determinar sua identidade. De acordo com Incandela, os físicos vão querer determinar, em particular, se o novo bóson tem spin zero como previsto.
A forma com que a nova partícula decai em outras também será fundamental para verificar sua natureza exata. No momento, o novo bóson já parece estar decaindo em pares de raios gama um pouco mais frequentemente do que o previsto pelas teorias, destacou Bill Murray, físico do Atlas, outro experimento envolvido na descoberta. O pesquisador reforça, no entanto, que é importante lembrar que os dados ainda são muito preliminares.
Segundo Heuer, o LHC funcionará por três meses além do que foi planejado originalmente, para tentar responder a algumas dessas perguntas no ano que vem. “É o início de uma longa jornada”, reforça ele.

Fonte : SCIAM