Arquivo da categoria: Astronomia

Matéria digital: recriando a natureza usando bits em vez de átomos

Bits de matéria

Os materiais artificiais projetados e construídos para terem propriedades não encontradas nos materiais naturais – os chamados metamateriais – são usados para fazer mantos de invisibilidade, lentes planas e outros dispositivos outrora considerados impossíveis.

O problema é que não é fácil fabricar os meta-átomos artificiais necessários para criar essa metamatéria.

Agora, em um trabalho que mereceu a capa da revista Nature Materials, pesquisadores demonstraram que é possível fabricar um metamaterial juntando "bits de matéria".

Cristian Giovampaola e Nader Engheta, da Universidade da Pensilvânia, nos Estados Unidos, lançaram o conceito de "metamaterial digital" e construíram os primeiros protótipos, demonstrando a possibilidade de fabricar materiais com uma determinada permissividade juntando quaisquer dois materiais, sendo necessário apenas que a permissividade de um dos materiais seja positiva e a do outro negativa.

Permissividade é a propriedade de um material que descreve sua reação a um campo eletromagnético dentro dele. Assim, é uma qualidade fundamental a ser considerada no projeto de dispositivos ópticos, como lentes, guias de onda, processadores fotônicos e, claro, mantos de invisibilidade dos mais diversos tipos.

Metamaterial digital

Tomando emprestado termos da computação binária, esses metamateriais "digitais" são compostos de "bits", que são então combinados em "bytes". Esses bytes podem assumir diferentes formatos, como cilindros em nanoescala construídos com um bit de um dos metamateriais embrulhado em outro.

"A inspiração veio da eletrônica digital," disse o professor Engheta, que vem trabalhando com o que ele chama de metatrônica, criando uma computação com luz no interior de processadores fotônicos.

"Com os sistemas binários, podemos pegar um sinal analógico – uma onda – decompor uma amostra em pontos discretos e, finalmente, expressá-los como uma sequência de 0s e 1s. Nós queríamos ver se conseguíamos quebrar as propriedades eletromagnéticas de um material da mesma forma.

Matéria digital: recriando a natureza usando bits em vez de átomos

A inspiração para a criação dos bits e bytes de matéria veio da eletrônica digital. [Imagem: Giovampaola/Engheta – 10.1038/nmat4082]

"Quando você digitaliza um sinal, você olha para a sua magnitude em cada ponto no tempo e lhe dá um valor. Estamos aplicando o mesmo processo aos materiais, olhando para a permissividade que eles precisam ter em cada ponto do espaço a fim de que executem a função que queremos," explicou o pesquisador.

No caso dos nanocilindros, alterando os raios dos núcleos e dos revestimentos, bem como qual dos dois bits fica de dentro ou de fora, a dupla demonstrou matematicamente a possibilidade de fabricar metamateriais sólidos de praticamente qualquer permissividade.

Além disso, eles demonstraram que, arranjando cuidadosamente esses bytes em padrões mais complicados, é possível fabricar lentes planas, hiperlentes e guias de onda.

Matéria digital na prática

Para simplificar o trabalho, Cristian e Enghetta simularam bytes de metamateriais feitos de prata e vidro, mas ressaltam que qualquer par de materiais que siga a regra permissividade negativa/positiva vai funcionar.

A geometria núcleo-revestimento do byte foi escolhida porque é uma estrutura que os cientistas dos materiais já são craques em construir. Mas é possível construir também bytes com geometrias alternativas, como materiais com camadas sobrepostas e alternadas.

Uma vez que os bytes são construídos, a necessidade de cada aplicação óptica que se tem em mente é atendida alterando a maneira como esses bytes são organizados uns ao lado dos outros.

Os pesquisadores demonstraram a viabilidade de criação de hiperlentes feitas com o metamaterial digital, lentes especiais que podem produzir imagens de objetos menores do que o comprimento de onda da luz, bem como guias de onda que canalizam a luz em torno de curvas e cantos.

Dispondo cuidadosamente os bytes de matéria artificial, de tal modo que eles canalizem de forma bem definida, é possível guiar a luz de forma precisa no interior de processadores que usam luz em vez de eletricidade. Ou criar a ilusão de que a luz passa direto através de um objeto, efetivamente tornando-o invisível.

Bibliografia:
Digital metamaterials
Cristian Della Giovampaola, Nader Engheta
Nature Materials
Vol.: 13, 1115-1121
DOI: 10.1038/nmat4082

Fonte : Inovação Tecnológica

Matéria digital: recriando a natureza usando bits em vez de átomos

Água da Terra é mais velha do que o Sol

Água da Terra é mais velha do que o Sol

A água dos oceanos da Terra parece ter uma história bem mais antiga do que se acreditava. [Imagem: Bill Saxton/NSF/AUI/NRAO]

 

Idade da água

Uma equipe de astrofísicos analisou o gás hidrogênio e seu isótopo deutério, espalhados pelo Sistema Solar e concluiu que a água da Terra é mais antiga do que o próprio Sol.

Isótopos são átomos do mesmo elemento que têm o mesmo número de prótons, mas um número diferente de nêutrons. A diferença de massa entre os isótopos resulta em diferenças sutis em seu comportamento durante as reações químicas.

Como resultado, a razão entre hidrogênio e deutério nas moléculas de água pode mostrar sob quais condições as moléculas de água se formaram.

Por exemplo, a água interestelar tem uma alta relação deutério/hidrogênio por causa das temperaturas muito baixas nas quais se formam, dizem os cientistas.

Até agora, não se sabia o quanto desse enriquecimento de deutério foi removido por processamento químico durante o nascimento do Sol, ou quanto de água rica em deutério o Sistema Solar recém-nascido foi capaz de produzir.

A equipe criou então modelos que simulam um disco protoplanetário nos quais todo o deutério do gelo do espaço já foi eliminado por transformação química, e o sistema tem que começar de novo "do zero" a produzir gelo com deutério em um período de milhões de anos.

Eles fizeram isso para ver se o Sistema Solar poderia produzir água com as proporções de deutério e hidrogênio encontradas em amostras de meteoritos, na água dos oceanos da Terra e nos cometas.

A equipe concluiu que não, que o Sistema Solar não produziria água desse tipo, o que foi interpretado como uma mostra de que pelo menos um pouco da água em nosso Sistema Solar – incluídos aí os oceanos da Terra – tem origem no espaço interestelar anterior ao nascimento do Sol.

A constatação é crucial para a busca de vida fora da Terra porque, se isso aconteceu aqui, deve acontecer em outros sistemas planetários, que podem nascer em ambientes bastante adequados a servir como base de uma futura vida orgânica.

Bibliografia:
The ancient heritage of water ice in the solar system
L. Ilsedore Cleeves, Edwin A. Bergin, Conel M. O D. Alexander, Fujun Du, Dawn Graninger, Karin I. Oberg, Tim J. Harries
Science
Vol.: 345 no. 6204 pp. 1590-1593
DOI: 10.1126/science.1258055

 

Fonte : Inovação Tecnológica

Base lunar da China é testada com sucesso na Terra

 

Palácio Lunar

A Agência Espacial Chinesa divulgou o término com sucesso do primeiro teste de longa duração do protótipo de uma estação espacial lunar.

Três pesquisadores da Universidade de Aeronáutica e Astronáutica de Pequim passaram 105 dias em isolamento no interior da construção, chamada Palácio Lunar (Lunar Palace 1 ouYuegong-1).

A instalação é composta por três módulos, com um volume interno de 500 metros cúbicos e ocupando uma área de 160 metros quadrados.

A astrobase inclui uma sala de estar, sala de trabalho, dormitório, um banheiro e instalações para cultivo de plantas e criação de animais (minhocas), coleta de resíduos e reprocessamento dos rejeitos e da água.

Ainda que a designação "Palácio Lunar" possa parecer adequada, o termo PALACE também é uma sigla para Permanent Astrobase Life-support Artificial Closed Ecosystem, ou astrobase permanente com suporte de vida por ecossistema fechado artificial, em tradução livre.

Suporte de vida biorregenerativo

Base lunar da China é testada com sucesso na Terra

Projeto da primeira colônia chinesa na Lua. [Imagem: CNSA]

Os pesquisadores chineses, que chamam a principal tecnologia usada na instalação de "suporte de vida biorregenerativo", apressaram-se em diferenciar o seu ecossistema artificial fechado do projeto Biosfera, feito nos Estados Unidos sem grande sucesso.

Segundo o professor Liu Hong, um dos idealizadores do projeto, enquanto a Biosfera tentou reproduzir o ecossistema terrestre inteiro, o Lunar Palace é voltado para reproduzir o "ecossistema humano", ou seja, um ambiente que permita a vida de um grupo de seres humanos por um tempo determinado.

Por exemplo, uma parte da alimentação dos três pesquisadores – sobretudo carne – foi fornecida de fora. Mas eles cultivaram 15 plantas, incluindo milho, soja, amendoim, lentilha, pepino e morango. A principal fonte de proteína veio de minhocas criadas no interior da estação, que são desidratadas para serem ingeridas.

As plantas foram também a principal fonte de oxigênio na estação, permitindo que o oxigênio disponível para os três tripulantes fosse reposto três vezes durante os 105 dias do teste.

Base lunar da China é testada com sucesso na Terra

A tripulação do teste de 105 dias foi formada por duas mulheres – Xie Beizhen e Wang Minjuan – e um homem – Dong Chen -, todos pesquisadores da Universidade de Aeronáutica e Astronáutica de Pequim. [Imagem: CNSA]

A água é reciclada e os dejetos humanos são processados por biofermentação. Os restos de alimentos e dos vegetais foram reprocessados para virar adubo e ajudar no cultivo das plantas, que receberam uma iluminação especial feita com LEDs.

Os responsáveis pelo projeto não divulgaram o consumo de energia do Palácio Lunar, uma informação crucial para sua viabilidade no espaço.

Lua e Marte

Antes de serem usadas para construir uma base na Lua, as tecnologias desenvolvidas no Palácio Lunar serão testadas em órbita da Terra, a bordo da estação espacial chinesa – que se chama "Palácio Celestial" (Tiangong).

"O sucesso do experimento lança fundações sólidas para os testes de demonstração do CELSS [sistema de suporte de vida ecológico controlado] na estação espacial da China, que será útil para os astronautas chineses obterem legumes frescos, melhorando suas condições de vida e aliviando seu estresse mental," afirma nota da CMSE (China Manned Space Engineering).

A nota afirma também que o suporte de vida biorregenerativo será utilizado no futuro na instalação de uma base na Lua e para a exploração de Marte.

 

Base lunar da China é testada com sucesso na Terra

O sistema de suporte de vida biorregenerativo será testado primeiro na Estação Espacial Chinesa, e depois na Lua e em Marte. [Imagem: CNSA]

 

Fonte : Inovação Tecnológica

E=mc2 pode falhar no espaço

E=mc<sup>2</sup> pode falhar no espaço
Uma pequena sonda espacial, levando átomos de hidrogênio e alguns detectores, pode testar se a famosa equação de Einstein vale em qualquer parte do espaço.
Equação local

O físico Andrei Lebed está agitando o mundo da física com uma ideia intrigante, mas que pode ser testada experimentalmente.

Segundo ele, a equação mais emblemática do mundo, a famosa E = mc2 de Albert Einstein, pode estar correta ou não, dependendo de onde você está no espaço.

Lebed propõe que a equação de equivalência entre massa e energia funciona no espaço curvado por um objeto celeste, mas não no espaço plano.

E ele propõe um experimento para testar sua ideia: uma sonda espacial levando consigo átomos de hidrogênio.

O átomo mais simples encontrado na natureza, o hidrogênio, consiste apenas de um núcleo orbitado por um elétron. Os cálculos de Lebed indicam que o elétron pode saltar para um nível de energia mais elevado apenas quando o espaço é curvo. A ideia pode ser testada detectando fótons emitidos durante esses eventos de comutação de energia.

Conceito de massa

A chamada Teoria da Relatividade Especial de Einstein é expressa na famosa equação E=mc2, onde E significa energia, m massa e c a velocidade da luz (elevada ao quadrado).

Os físicos já validaram as ideias de Einstein em inúmeras experiências e cálculos, e em muitas tecnologias, incluindo bombas atômicas, telefones celulares e GPS.

Uma das consequências bem conhecidas da relatividade é que a massa dos objetos curva o espaço ao seu redor.

A chave para o argumento de Lebed reside justamente no conceito de massa.

De acordo com o paradigma aceito hoje, não há diferença entre a massa de um objeto em movimento, que pode ser definida em termos da sua inércia, e a massa outorgada a esse objeto por um campo gravitacional.

Em termos simples, o primeiro conceito, também chamado de massa inercial, é o que faz com que o pára-choques de um carro se dobre com o impacto em um poste, enquanto o segundo, chamado massa gravitacional, é vulgarmente conhecido como “peso”.

E=mc<sup>2</sup> pode falhar no espaço

Um pulsar superpesado parece ser pesado demais mesmo para as teorias de Einstein, tendo recentemente colocado a teoria em cheque. [Imagem: David A. Aguilar (CfA)/NASA/ESA]

Massas inercial e gravitacional

Este princípio de equivalência entre as massas inercial e gravitacional vem sendo confirmado com um nível de precisão cada vez mais elevado.

“Mas meus cálculos mostram que, acima de uma certa probabilidade, há uma chance muito pequena, mas real, de que a equação falhe para uma massa gravitacional,” disse Lebed.

Quando se mede seguidamente o peso de objetos quânticos – como um átomo de hidrogênio -, o resultado será o mesmo na grande maioria dos casos. Mas uma pequena porção dessas medições vai dar uma leitura diferente, em uma aparente violação de E=mc2.

Isto tem confundido os físicos, mas poderia ser explicado se massa gravitacional não fosse o mesmo que massa inercial, o que é um paradigma em física.

“A maioria dos físicos não concorda com isso porque acredita que a massa gravitacional iguala exatamente a massa inercial,” diz Lebed. “Mas o que defendo é que a massa gravitacional pode não ser igual à massa inercial devido a alguns efeitos quânticos na Relatividade Geral, que é a teoria da gravitação de Einstein.”

E=mc<sup>2</sup> pode falhar no espaço

Por outro lado, o espaço pode não ser totalmente plano fora do raio de ação das grandes massas:Universo pode ter singularidade não prevista por Einstein. [Imagem: NASA]

Conceito de gravidade de Einstein

De acordo com Einstein, a gravidade é o resultado de uma curvatura no próprio espaço.

Pense em um colchão sobre o qual foram colocados vários objetos, por exemplo, uma bola de pingue-pongue, uma bola de beisebol e uma bola de boliche. A bola de pingue-pongue não fará uma curvatura visível, a bola de beisebol vai fazer um declive muito pequeno e a bola de boliche vai afundar na espuma.

Estrelas e planetas fazem o mesmo para o espaço – quanto maior a massa de um objeto, maior será a cavidade que ele fará no tecido do espaço. Em outras palavras, quanto mais massa, mais forte é o puxão gravitacional.

Neste modelo conceitual da gravitação é fácil ver como um pequeno objeto, como um asteroide errante pelo espaço, eventualmente é pego na “depressão” de um planeta, preso em seu campo gravitacional.

De acordo com o físico, é a curvatura do espaço que torna a massa gravitacional diferente da massa inercial.

Sonda da massa

Lebed sugere testar sua ideia medindo o peso do objeto quântico mais simples: um único átomo de hidrogênio – na verdade, como ele espera que o efeito será extremamente pequeno, serão necessários muitos átomos de hidrogênio.

Veja como funcionaria:

E=mc<sup>2</sup> pode falhar no espaço

O Telescópio Einstein é uma das principais esperanças dos físicos para detectar as ondas gravitacionais. [Imagem: NASA]

Em raras ocasiões, o elétron que circula ao redor do núcleo do átomo salta para um nível mais elevado de energia, que pode ser imaginado aproximadamente como uma órbita mais larga. Em pouquíssimo tempo, o elétron volta para seu nível de energia anterior.

De acordo com a equação E=mc2, a massa do átomo de hidrogênio vai mudar junto com a alteração do nível de energia do elétron.

Aqui embaixo, onde o espaço está curvado pela massa da Terra, tudo funciona como bem se sabe. Mas o que aconteceria se levássemos o mesmo átomo a uma certa distância da Terra, onde o espaço não é mais curvado, mas plano?

Certo, o elétron não poderia saltar para níveis mais elevados de energia porque, no espaço plano, ele estaria confinado ao seu nível primário de energia. Não haveria salto no espaço plano.

“Neste caso, o elétron pode ocupar somente o primeiro nível do átomo de hidrogênio,” explica Lebed. “Ele não sente a curvatura da gravidade.”

Lebed afirma que a nave não teria que ir muito longe: “Nós teríamos que enviar a sonda para o espaço cerca de duas ou três vezes o raio da Terra, e tudo vai funcionar”.

Casamento duvidoso

Segundo o físico, seu trabalho é a primeira proposta para testar a combinação da mecânica quântica e da teoria da gravidade de Einstein no Sistema Solar.

“Não há experiências diretas sobre o casamento dessas duas teorias”, disse ele. “É importante não só do ponto de vista de que a massa gravitacional não é igual à massa inercial, mas também porque muitos veem esse casamento como uma espécie de monstruosidade. Eu gostaria de testar este casamento. Quero ver se ele funciona ou não.”

[Imagem: NASA]

Fonte : Inovação Tecnológica