Arquivo da categoria: Astronomia

Made in Russia – Luna-25 colide com a Lua

A primeira missão lunar da Rússia em 47 anos fracassou depois que sua sonda Luna-25 saiu do controle e se chocou contra a Lua.

A Roskosmos, a agência espacial estatal russa, disse que perdeu contato com a nave após a sonda ter sido colocada na órbita de pré-pouso no sábado (19).

A espaçonave deveria ser a primeira missão de pouso lunar da Rússia em 47 anos. O último módulo lunar, Luna 24, pousou na superfície da Lua em 18 de agosto de 1976.

A espaçonave Luna-25 foi lançada do Cosmódromo Vostochny no Oblast de Amur, na Rússia, em 10 de agosto. A trajetória da Luna 25 permitiu que ela superasse a sonda lunar Chandrayaan-3 da Índia, lançada em meados de julho, a caminho da superfície lunar.

Nesta semana, a sonda da Índia também tentará pousar sua sonda no satélite da Terra.

 

Magnetares – Novo tipo de estrela traz pistas sobre os misteriosos objetos cósmicos

Estrela misteriosa

As magnetares são os ímãs mais fortes do Universo. Essas estrelas mortas superdensas, com campos magnéticos extremamente fortes, podem ser encontradas em toda a parte na nossa galáxia, mas os astrônomos não sabem exatamente como é que esses objetos celestes se formam.

Agora, usando vários telescópios de todo o mundo, astrônomos documentaram uma estrela viva que provavelmente se transformará numa magnetar. Este resultado marca a descoberta de um novo tipo de objeto astronômico, batizado de estrela magnética massiva de hélio, e ajuda a investigar as origens das magnetares.

Apesar de já ter sido observada há mais de 100 anos, a natureza enigmática da estrela HD 45166 continua a não ser facilmente explicada pelos modelos convencionais, e pouco se sabe sobre esse objeto além do fato de ser rica em hélio e ser algumas vezes mais massiva que o nosso Sol.

Apesar de a HD 45166 ser um sistema binário, este estudo concentrou-se apenas na estrela rica em hélio e não em ambas as parceiras do binário. O sistema está localizado a cerca de 3.000 anos-luz de distância da Terra, na constelação do Unicórnio.

Proto-magnetar

O astrônomo Tomer Shenar, da Universidade de Amsterdã, nos Países Baixos, levantou a hipótese de que os campos magnéticos poderiam ajudar a explicar o comportamento dessa estrela tão peculiar. De fato, sabe-se que os campos magnéticos influenciam o comportamento das estrelas e, por isso, talvez pudessem explicar também por que é que os modelos tradicionais falham na descrição da HD45166.

A comprovação disso exigiu analisar a estrela com diferentes instrumentos de diversos observatórios, para colher todos os dados necessários.

E a conclusão foi clara: Os dados indicam que a estrela é decididamente magnética, com um campo magnético extremamente forte, de 43.000 gauss – é a estrela massiva mais magnética encontrada até hoje.

“Toda a superfície da estrela de hélio tem um campo magnético quase 100.000 mais forte que o da Terra,” destacou Pablo Marchant, da Universidade de Lovaina, na Bélgica.

O campo magnético de 43.000 gauss é o campo mais forte já detectado numa estrela que excede o limite de massa de Chandrasekhar, o qual corresponde ao limite crítico acima do qual as estrelas podem colapsar em estrelas de nêutrons – as magnetares são um tipo de estrelas de nêutrons.

Ímãs mais fortes do Universo

A descoberta desta primeira estrela magnética massiva de hélio dá pistas sobre a origem das magnetares, que são estrelas mortas compactas permeadas por campos magnéticos pelo menos um milhar de milhões de vezes mais fortes do que o da HD45166.

Os cálculos da equipe indicam que esta estrela irá terminar a sua vida como uma magnetar. À medida que for colapsando sob a sua própria gravidade, o seu campo magnético irá fortalecer-se e eventualmente a estrela transformar-se-á num núcleo muito compacto, com um campo magnético de cerca de 100 bilhões de gauss – o tipo de ímã mais poderoso do Universo.

Os dados também mostraram que a HD 45166 tem uma massa menor do que a registada anteriormente, cerca de duas vezes a massa do Sol, e que a sua companheira orbita a uma distância maior do que o que se supunha antes.

O astrônomo Alexandre Soares de Oliveira, da Universidade do Vale do Paraíba (SP), faz parte da equipe que descobriu este novo tipo de estrela.

 
A HD 45166 tem um campo magnético de 43.000 gauss, o campo magnético mais forte encontrado até hoje numa estrela massiva.
[Imagem: ESO/L. Calçada]

This artist impression shows HD 45166, a massive star recently discovered to have a powerful magnetic field of 43 000 gauss, the strongest magnetic field ever found in a massive star. Intense winds of particles blowing away from the star are trapped by this magnetic field, enshrouding the star in a gaseous shell as illustrated here. Astronomers believe that this star will end its life as a magnetar, a compact and highly magnetic stellar corpse. As HD 45166 collapses under its own gravity, its magnetic field will strengthen, and the star will eventually become a very compact core with a magnetic field of around 100 trillion gauss — the most powerful type of magnet in the Universe. HD 45166 is part of a binary system. In the background, we get a glimpse of HD 45166’s companion, a normal blue star that has been found to orbit at a far larger distance than previously reported.

 

James Webb – 2 novas estrelas do tipo Kaiju e implicações relacionadas a matéria escura.

JWST’s PEARLS: Mothra, a new kaiju star at z=2.091 extremely magnified by MACS0416, and implications for dark matter models

Artigo em PDF.

Foram descobertas duas novas estrelas do tipo “Kaiju”. A Godzilla e a Mothra, essas estrelas são caracterizadas por serem massivas e brilhantes.

Essas estrelas estão localizadas a uma distância impressionante da Via Láctea, com a luz delas levando aproximadamente mais de 15 bilhões de anos para nos alcançar. A visibilidade dessas estrelas como estrelas individuais a essas distâncias é possível graças aos poderosos efeitos de lente gravitacional, produzidos por um aglomerado galáctico conhecido como max0416.

A pesquisa revelou que essas estrelas são provavelmente parte de um sistema binário, com uma luminosidade de 50.000 e 125.000 sóis, respectivamente. Elas são muito diferentes do que esperávamos, sendo muito maiores do que qualquer supergigante na Via Láctea, mas não muito quentes.

Provavelmente Mothra é formada por duas estrelas supergigantes : 

  • Uma Vermelha – ~5000K e luminosidade de 50000 sóis
  • Uma Azul – ~14000K e luminosidade de 125000 sóis.

A parte interessante é a ampliação.

Os Clusters entre as estrelas e as observações (Hubble & JWST)  deveria  ser  um fator de 4000. Algo próximo as estrelas dando um aumento à ampliação, o time calculou que algo do tamanho de uma galáxia anã entre 10000 a 2.5 milhões a massa do sól, mas ambos observatórios puderam vê-los. 

Isso sugere que o objeto pode ser uma galáxia anã feita de máteria escura.

Mais no Youtube :  

 

 

 

NASA…. NASA…. Perda de contato com a Voyager 2 devido a comandos errôneos enviados a sonda.

JPL : 

“A series of planned commands sent to NASA’s Voyager 2 spacecraft on July 21 inadvertently caused the antenna to point 2 degrees away from Earth. As a result, Voyager 2 is currently unable to receive commands or transmit data back to Earth.”

Esperando pelo conserto automático em 15 de outubro.

Durante a transmissão de uma série de comandos planejados para a sonda espacial Voyager 2, alguma coisa saiu errado, causando um desalinhamento na antena da sonda apontando 2 graus para longe da Terra.

Como resultado, a Voyager 2 perdeu contato, e agora não consegue receber comandos ou transmitir dados de volta à Terra.

A Voyager 2 está programada para redefinir sua orientação várias vezes a cada ano para manter sua antena apontada para a Terra.

O próximo ajuste ocorrerá no próximo 15 de outubro , que deverá permitir a retomada da comunicação. A equipe da missão espera que a Voyager 2 permaneça em sua trajetória planejada durante o período de silêncio pois qualquer pequeno desvio pode impedir o realinhamento da antena.

LInks relacionados : 

Streaming ao vivo da NASA : Double Asteroid Redirection Test (DART)

Segunda : 18:30

 

DART é uma espaconave desenhada para efetuar um impacto em um asteróide e testar a tecnologia.

O Asteroid alvo atual NÃO é uma ameaça a Terra. O asteróide alvo somente foi escolhido para o teste.

Esse sistema anti-asteróide é um perfeito teste para ver se intencionalmente impactando uma nave em um asteróide é um meio efetivo para mudar sua trajetória caso um asteóide que seja perigoso a Terra seja descoberto no fututo.

TRAPPIST-1 e seus planetas. Branca (bronzada na verdade) de neve e seus sete anões ?

Sete terras

Astrônomos descobriram um sistema com sete planetas do tamanho da Terra a um pulinho daqui em termos astronômicos – apenas 40 anos-luz de distância.

Usando telescópios no espaço e no solo, os exoplanetas foram todos detectados pela técnica do trânsito planetário, quando passavam em frente da sua estrela progenitora, a estrela anã superfria chamada TRAPPIST-1 – o nome é uma referência ao telescópio usado para descobri-la, o Transiting Planets and Planetesimals Small Telescope.

Três dos planetas situam-se na zona habitável da estrela, com possibilidade de água líquida na superfície, aumentando a possibilidade deste sistema planetário conter vida – nunca tantos planetas promissores haviam sido identificados ao redor de uma única estrela. Os sete pequenos planetas, por enquanto, estão sendo chamados de TRAPPIST-1b, c, d, e, f, g, h – por ordem crescente de distância da estrela.

Os astrônomos utilizaram o telescópio TRAPPIST-Sul instalado no Observatório de La Silla do ESO, o VLT situado no Paranal e o Telescópio Espacial Spitzer da NASA, além de outros telescópios em todo o mundo para confirmar a existência dos sete planetas – não está descartada a possibilidade da existência de outros planetas no sistema.

“Trata-se de um sistema planetário extraordinário – não apenas por termos encontrado tantos planetas, mas porque todos eles são surpreendentemente parecidos com a Terra em termos de tamanho!” comemorou Michaël Gillon, da Universidade de Liège, na Bélgica.

Estrela TRAPPIST-1

Com apenas 8% da massa do Sol, a TRAPPIST-1 é muito pequena em termos estelares, apenas um pouco maior que o planeta Júpiter. Por isso, apesar de se encontrar próxima de nós, na constelação de Aquário, ela é muito fraca para ser vista a olho nu. Para os telescópios, por outro lado, isto é uma ótima notícia, já que eles não são tão ofuscados pelo brilho como ocorre na observação de estrelas mais brilhantes.

“A energia emitida por estrelas anãs como a TRAPPIST-1 é muito menor do que a liberada pelo nosso Sol e por isso os planetas têm que ocupar órbitas muito mais próximas da estrela do que as que observamos no Sistema Solar para poderem ter água na superfície. Felizmente, parece que este tipo de configuração compacta é exatamente o que observamos em torno de TRAPPIST-1!” disse Amaury Triaud, coautor da descoberta.

Desta forma, o sistema se parece muito mais com Júpiter e suas luas do que com o Sistema Solar inteiro. As órbitas dos planetas não são muito maiores que as apresentadas pelo sistema de satélites galileanos situado em torno de Júpiter, sendo muito menores que a órbita de Mercúrio no Sistema Solar.

A equipe determinou que todos os planetas no sistema são semelhantes à Terra e a Vênus em termos de tamanho, ou ligeiramente menores. As medições de densidade sugerem que pelo menos os seis planetas mais internos têm provavelmente uma composição rochosa.

Zona habitável

O pequeno tamanho da TRAPPIST-1, assim como a sua temperatura baixa, significam que a emissão de energia dirigida aos seus planetas é semelhante à recebida pelos planetas internos do nosso Sistema Solar; os planetas TRAPPIST-1c, d, f recebem quantidades de energia comparáveis às que os planetas Vênus, Terra e Marte, respectivamente, recebem do Sol.

Os sete planetas podem potencialmente conter água líquida em sua superfície, apesar de as distâncias orbitais tornarem alguns candidatos mais prováveis a esta condição do que outros. Os modelos climáticos sugerem que os planetas mais internos, TRAPPIST-1b, c, d, são provavelmente muito quentes para possuírem água líquida, exceto talvez numa pequena fração das suas superfícies. A distância orbital do planeta mais exterior do sistema, TRAPPIST-1h, ainda não foi confirmada, embora ele pareça encontrar-se muito afastado e frio para poder conter água líquida – assumindo que não ocorra nenhum processo de aquecimento alternativo.

Já os planetas TRAPPIST-1e, f, g representam o “santo graal” para os astrônomos que procuram planetas, uma vez que orbitam na zona habitável da estrela e poderão conter água em suas superfícies.

Fonte : Inovação Tecnológica

Lua de Júpiter será primeiro alvo na busca por vida extraterrestre

Europa tem um vasto oceano salgado debaixo de uma camada de gelo. [Imagem: NASA/JPL-Caltech/SETI]

Rabiscos promissores

Depois de duas décadas de preparações e adiamentos, duas missões estão prestes a partir para Europa, uma das dezenas de luas de Júpiter que se transformou na maior chance de encontrar vida extraterrestre no Sistema Solar.

O satélite, um dos 67 já identificados ao redor de Júpiter, é menor do que a nossa Lua e, à distância, parece uma bola com riscos que parecem ter sido feitos por uma criança.

De perto, porém, os rabiscos são longas rachaduras no gelo que cobre a superfície de Europa e que se estendem por milhares de quilômetros. Muitas dessas rachaduras estão cheias de uma substância ainda desconhecida, apelidada pelos cientistas de “gosma marrom”.

Exo-oceano

A imensa gravidade de Júpiter gera forças que repetidamente criam um efeito elástico na lua. Mas os estresses criados na superfície de Europa parecem ser melhor explicados pela crosta de gelo flutuando em um oceano.

“Sabemos que há água sob a superfície por causa de medições feitas por missões anteriores. E isso faz de Europa um dos mais excitantes locais potenciais para procurarmos por vida,” afirma Andrew Coates, do Laboratório Mullard de Ciências Espaciais da Universidade College de Londres.

O oceano de Europa tem uma profundidade estimada entre 80 km e 170 km – isso significa que poderia ter um volume de líquido duas vezes maior do que a água de todos os oceanos da Terra.

A água é um pré-requisito vital para a existência de vida como a conhecemos, mas o oceano de Europa pode ter outros pré-requisitos, como uma fonte de energia química para micróbios.

E mais: o oceano pode “se comunicar” com a superfície por uma série de maneiras, incluindo blocos aquecidos de gelo furando a crosta superficial. Assim, o estudo da superfície pode dar pistas do que está acontecendo embaixo, na água.

Imagens da superfície de Europa feitas pela missão Galileu mostram, em sentido horário a partir da superior esquerda: (1) crosta de gelo quebrada na região conhecida como Conamara; (2) placas da crosta que, acredita-se, quebraram e se arranjaram em posições diferentes; (3) faixas avermelhadas; e (4) uma cratera que pode ter o tamanho do Havaí. [Imagem: NASA/JPL/University of Arizona]

Exploração de Europa

É por isso que a NASA está preparando duas missões para explorar Europa.

Uma delas é a Clipper, com lançamento previsto para 2022 e que ficará na órbita da lua. A outra, ainda sem nome, será uma tentativa de pousar.

“Queremos investigar o potencial que Europa tem de abrigar vida. Por isso precisamos tentar entender o que se passa no oceano e na crosta gelada – da composição à geologia, bem como o nível de atividade,” explicou Robert Pappalardo, do Laboratório de Propulsão a Jato da NASA e principal investigador da Clipper.

A sonda espacial levará nove instrumentos, incluindo uma câmera que mapeará a maior parte da superfície da lua. Espectrômetros analisarão a composição química, enquanto um radar de alta potência fará um mapeamento tridimensional da camada gelada. Por fim, um magnetômetro analisará as características mais gerais do oceano.

A sonda Clipper será um verdadeiro acrobata espacial, com órbitas complicadas para fazer vários sobrevoos em Europa. [Imagem: NASA/JPL-Caltech]

Energia para a vida

Se há um fator que torna Europa um caso especial é sua vizinhança: a órbita da lua a leva bem adentro do poderoso campo gravitacional de Júpiter, que captura e acelera partículas criando cinturões de radiação intensa.

Essa radiação pode “fritar” os componentes eletrônicos das espaçonaves, o que limita a duração das missões espaciais. Mas a mesma radiação causa reações químicas na superfície de Europa, resultando em compostos oxidantes.

Na Terra, reações entre oxidantes e compostos redutores fornecem a energia necessária para a vida. Mas em Europa esses oxidantes só são úteis para possíveis micróbios se chegarem ao oceano. Os cientistas acreditam que isso pode acontecer com o processo de convecção da crosta, e que reatores criados pela interação entre a água salgada e o fundo rochoso do oceano podem reagir com os oxidantes.

 

Pouso em Europa

A planejada segunda missão, projetada para pousar em Europa, poderá usar a tecnologia de “guindaste espacial” (Sky Crane), a mesma que de forma bem-sucedida pôs na superfície de Marte o jipe-robô Curiosity, em 2012. A sonda teria um sistema autônomo de aterrissagem para detectar obstáculos em tempo real.

Sendo assim, a missão Clipper terá a função de também fazer o reconhecimento para um local de pouso da segunda missão. “É como se estivéssemos procurando um oásis, com água próxima à superfície. Talvez a água seja morna e tenha materiais orgânicos”, explica Pappalardo.

A sonda que pousaria em Europa seria ainda equipada com uma serra para coletar amostras de gelo mais profundas e menos atingidas pela radiação. “Queremos buscar as amostras mais preservadas possíveis. Uma forma é cavar fundo, a outra é buscar algum local em que tenha havido algum tipo de erupção, em que material fresco está caindo na superfície”, diz Niebur.

 

Pousando uma sonda em Europa, será possível determinar se a vida existe ou já existiu na lua de Júpiter. [Imagem: NASA/JPL-Caltech]

Encélado

Mas desde que a missão Galileu descobriu sinais da existência de água em Europa, nos anos 90, sabemos que a lua jupteriana não é um caso isolado.

“Uma das mais significativas descobertas da última década em exploração planetária é que, se você atirar uma pedra nos planetas do Sistema Solar além de Marte, você acabará acertando um mundo com oceanos”, diz Curt Niebur, também membro da missão Clipper.

Em Encélado, uma das luas de Saturno, por exemplo, há um oceano subterrâneo que provoca “erupções” por meio de fissuras no polo sul. O satélite natural, por sinal, poderá ser o destino de uma missão na próxima década.

Niebur, porém, acredita no maior potencial de Europa: “Europa é muito maior que Encélado e tem mais de tudo: atividade geológica, água, espaço, calor e estabilidade em seu ambiente.”

Fonte : Inovação Tecnologica